Powered by

— SolidityScan | —[CRED
SHIELDS

Security Assessment Report

Empx Via Bridge
13 Jan 2026

This security assessment report was prepared by

SolidityScan.com, a cloud-based Smart Contract Scanner.

SolidityScan e A security assessment report

https://solidityscan.com/
https://www.credshields.com/

Table of Contents

01 Vulnerability Classification and Severity
02 Executive Summary
03 Findings Summary

04 Vulnerability Details
FEE ON TRANSFER TOKEN INCOMPATIBILITY
L2 MESSAGE REPLAY
USE OF TX.GASPRICE

STALE UNLIMITED ALLOWANCE ON FEETOKEN TO PREVIOUS MESSAGEV3 AFTER
RECONFIGURATION ENABLES FEE-TOKEN DRAIN

PAUSABLE MECHANISM NOT ENFORCED

USERS CANNOT BOUND PROTOCOLFEE/VIASOURCEFEE; OWNER CAN FRONT-RUN FEE
INCREASES TO EXTRACT ARBITRARY FEES

WRAPPED GAS TOKEN APPROVALS REMAIN FOR OLD MESSAGEV3 AND OLD WRAPPED
TOKENS, ENABLING UNINTENDED TOKEN SPEND

WRAPPED GAS TOKEN REQUIREMENT CAN BE BYPASSED WHEN VIADESTGAS == 0, RISKING
STUCK MESSAGES

APPROVING MAXIMUM VALUE

USE OF FLOATING PRAGMA

LACK OF ZERO VALUE CHECK IN TOKEN TRANSFERS
MISSING EVENTS

MISSING ZERO ADDRESS VALIDATION

OUTDATED COMPILER VERSION

USE OWNABLE2STEP

UNPROTECTED ETHER WITHDRAWAL

Page 1 SolidityScan e A security assessment report

Page 2

HARD-CODED GAS LIMITS

IF-STATEMENT REFACTORING

MISSING @AUTHOR IN NATSPEC COMMENTS FOR CONTRACT DECLARATION

MISSING @DEV IN NATSPEC COMMENTS FOR CONTRACT DECLARATION

MISSING @DEV IN NATSPEC COMMENTS FOR FUNCTIONS

MISSING INDEXED KEYWORDS IN EVENTS

MISSING @INHERITDOC ON OVERRIDE FUNCTIONS

MISSING NATSPEC COMMENTS IN SCOPE BLOCKS

MISSING NATSPEC DESCRIPTIONS FOR PUBLIC VARIABLE DECLARATIONS

MISSING @NOTICE IN NATSPEC COMMENTS FOR CONSTRUCTORS

MISSING @NOTICE IN NATSPEC COMMENTS FOR FUNCTIONS

REVERT STATEMENTS WITHIN EXTERNAL AND PUBLIC FUNCTIONS CAN BE USED TO
PERFORM DOS ATTACKS

UNNAMED FUNCTION PARAMETERS

USE CALL INSTEAD OF TRANSFER OR SEND

ABI ENCODE IS LESS EFFICIENT THAN ABI ENCODEPACKED

AVOID RE-STORING VALUES

AVOID ZERO-TO-ONE STORAGE WRITES

CACHE ADDRESS(THIS) WHEN USED MORE THAN ONCE

CHEAPER CONDITIONAL OPERATORS

CHEAPER INEQUALITIES IN IF()

DEFINE CONSTRUCTOR AS PAYABLE

REVERTING FUNCTIONS CAN BE PAYABLE

FUNCTION SHOULD RETURN STRUCT

GAS INEFFICIENCY DUE TO MULTIPLE OPERANDS IN SINGLE IF/ELSEIF CONDITION

ADDING A RETURN STATEMENT WHEN THE FUNCTION DEFINES A NAMED RETURN VARIABLE

IS REDUNDANT

SolidityScan e A security assessment report

GAS OPTIMIZATION FOR STATE VARIABLES

STORAGE VARIABLE CACHING IN MEMORY

05 Scan History

06 Disclaimer

Page 3 SolidityScan e A security assessment report

01. Classification and Severity

Description

To enhance navigability, the document is organized in descending order of severity for easy reference. Issues are categorized
as v Fixed, Pending Fix, or “x Won't Fix, indicating their current status. “x Won't Fix denotes that the team is
aware of the issue but has chosen not to resolve it. Issues labeled as Pending Fix state that the bug is yet to be
resolved. Additionally, each issue's severity is assessed based on the risk of exploitation or the potential for other unexpected
or unsafe behavior.

e Critical ¢ High

The issue affects the contract in such a way that funds High-severity vulnerabilities pose a significant risk to both
may be lost, allocated incorrectly, or otherwise result in a the Smart Contract and the organization. They can lead
significant loss. to user fund losses, may have conditional requirements,

and are challenging to exploit.

Medium * Low
The issue affects the ability of the contract to operate in The issue has minimal impact on the contract’s ability to
a way that doesn't significantly hinder its behavior. operate.

Informational Gas
The issue does not affect the contract's operational This category deals with optimizing code and refactoring
capability but is considered good practice to address. to conserve gas.

Page 4 SolidityScan e A security assessment report

02.

Summary

4 f Empx Via Bridge
.sol Uploaded Solidity File(s)

Language

Solidity

Publishers/Owner Name

72.77

Audit Methodology

Static Scanning

Organization

Security Score is AVERAGE

Website

Contact Email

The SolidityScan score is calculated based on lines of code and weights assigned to
each issue depending on the severity and confidence. To improve your score, view
the detailed result and leverage the remediation solutions provided.

This report has been prepared for Empx Via Bridge using SolidityScan to scan and discover vulnerabilities and safe coding
practices in their smart contract including the libraries used by the contract that are not officially recognized. The
SolidityScan tool runs a comprehensive static analysis on the Solidity code and finds vulnerabilities ranging from minor gas
optimizations to major vulnerabilities leading to the loss of funds. The coverage scope pays attention to all the informational
and critical vulnerabilities with over 700+ modules. The scanning and auditing process covers the following areas:

Various common and uncommon attack vectors will be investigated to ensure that the smart contracts are secure from
malicious actors. The scanner modules find and flag issues related to Gas optimizations that help in reducing the overall Gas
cost It scans and evaluates the codebase against industry best practices and standards to ensure compliance It makes sure

that the officially recognized libraries used in the code are secure and up to date.

The SolidityScan Team recommends running regular audit scans to identify any vulnerabilities that are introduced after Empx
Via Bridge introduces new features or refactors the code.

Page 5

SolidityScan e A security assessment report

03. Findings Summary

i f Empx Via Bridge
s File Scan

O Security Score ’ Scan duration Lines of code
72.77/100 305 secs 212

57

Total Vulnerabilities
found

Crit High Med Low Info Gas

_|° This audit report has not been verified by the SolidityScan team. To learn more
. about our published reports. click here

-

r

Page 6 SolidityScan e A security assessment report

ACTION TAKEN

0 98 0 58

v Fixed vx False Positive x Won't Fix ! Pending Fix
S. No. Severity Bug Type Instances Detection Method Status
HOO01 @ High FEE ON TRANSFER TOKEN INCOMPATIBILITY 1 SolidityScan Al 2 False Positive
HO002 @ High L2 MESSAGE REPLAY 1 SolidityScan Al False Positive
HO03 @ High USE OF TX.GASPRICE 2 Automated False Positive
HO04 @ High STALE UNLIMITED ALLOWANCE ON FEETOKEN TO 1 SolidityScan Al False Positive
PREVIOUS MESSAGEV3 AFTER RECONFIGURATION
ENABLES FEE-TOKEN DRAIN
MO001 Medium PAUSABLE MECHANISM NOT ENFORCED 1 SolidityScan Al False Positive
MO002 Medium USERS CANNOT BOUND 1 SolidityScan Al False Positive
PROTOCOLFEE/VIASOURCEFEE; OWNER CAN
FRONT-RUN FEE INCREASES TO EXTRACT
ARBITRARY FEES
M003 Medium WRAPPED GAS TOKEN APPROVALS REMAIN FOR 1 SolidityScan Al False Positive
OLD MESSAGEV3 AND OLD WRAPPED TOKENS,
ENABLING UNINTENDED TOKEN SPEND
M004 Medium WRAPPED GAS TOKEN REQUIREMENT CAN BE 1 SolidityScan Al False Positive
BYPASSED WHEN VIADESTGAS == 0, RISKING
STUCK MESSAGES
LOO1 @® Low APPROVING MAXIMUM VALUE 3 Automated False Positive
L0002 @® Low USE OF FLOATING PRAGMA 1 Automated False Positive
LO03 @ Low LACK OF ZERO VALUE CHECK IN TOKEN 3 Automated False Positive
TRANSFERS
LO04 @ Low MISSING EVENTS 3 Automated False Positive
LOOS @® Low MISSING ZERO ADDRESS VALIDATION 3 Automated False Positive
Page 7 SolidityScan e A security assessment report

S. No. Severity Bug Type Instances Detection Method Status

L007 @® Low USE OWNABLE2STEP 1 Automated vy False Positive
L008 @® Low UNPROTECTED ETHER WITHDRAWAL 1 SolidityScan Al vy False Positive
1001 @ Informational ADDING A RETURN STATEMENT WHEN THE 1 Automated ! Pending Fix

FUNCTION DEFINES A NAMED RETURN VARIABLE
IS REDUNDANT

1002 @® Informational HARD-CODED GAS LIMITS 1 Automated ! Pending Fix
1003 @® Informational IF-STATEMENT REFACTORING 1 Automated ! Pending Fix
1004 @® Informational MISSING @AUTHOR IN NATSPEC COMMENTS FOR 1 Automated ! Pending Fix

CONTRACT DECLARATION

1005 @ Informational MISSING @DEV IN NATSPEC COMMENTS FOR 1 Automated ! Pending Fix
CONTRACT DECLARATION

1006 @® Informational MISSING @DEV IN NATSPEC COMMENTS FOR 15 Automated Yy False Positive
FUNCTIONS

1007 @ Informational MISSING INDEXED KEYWORDS IN EVENTS 2 Automated ! Pending Fix

1008 @® Informational MISSING @INHERITDOC ON OVERRIDE FUNCTIONS 15 Automated v False Positive

1009 @ Informational MISSING NATSPEC COMMENTS IN SCOPE BLOCKS 7 Automated ! Pending Fix

1010 @ Informational MISSING NATSPEC DESCRIPTIONS FOR PUBLIC 13 Automated % False Positive

VARIABLE DECLARATIONS

1011 @ Informational MISSING @NOTICE IN NATSPEC COMMENTS FOR 1 Automated ! Pending Fix
CONSTRUCTORS

1012 @ Informational MISSING @NOTICE IN NATSPEC COMMENTS FOR 15 Automated 2] False Positive
FUNCTIONS

1013 @ |Informational REVERT STATEMENTS WITHIN EXTERNAL AND 15 Automated "x False Positive
PUBLIC FUNCTIONS CAN BE USED TO PERFORM
DOS ATTACKS

1014 @® Informational UNNAMED FUNCTION PARAMETERS 1 Automated ! Pending Fix

Page 8 SolidityScan e A security assessment report

S. No. Severity Bug Type Instances Detection Method Status

1015 @ Informational USE CALL INSTEAD OF TRANSFER OR SEND 1 Automated ! Pending Fix
G001 ® Gas ABI ENCODE IS LESS EFFICIENT THAN ABI 1 Automated ! Pending Fix
ENCODEPACKED
G002 ® Gas AVOID RE-STORING VALUES 5 Automated ! Pending Fix
G003 ® Gas AVOID ZERO-TO-ONE STORAGE WRITES 4 Automated ! Pending Fix
G004 ® Gas CACHE ADDRESS(THIS) WHEN USED MORE THAN 4 Automated ! Pending Fix
ONCE
G005 ® Gas CHEAPER CONDITIONAL OPERATORS 3 Automated ! Pending Fix
G006 ® Gas CHEAPER INEQUALITIES IN IF() 5 Automated ! Pending Fix
G007 ® Gas DEFINE CONSTRUCTOR AS PAYABLE 1 Automated ! Pending Fix
G008 ® Gas REVERTING FUNCTIONS CAN BE PAYABLE 8 Automated ! Pending Fix
G009 ® Gas FUNCTION SHOULD RETURN STRUCT 2 Automated ! Pending Fix
G010 ® Gas GAS INEFFICIENCY DUE TO MULTIPLE OPERANDS 2 Automated ! Pending Fix

IN SINGLE IF/ELSEIF CONDITION

GO11 ® Gas GAS OPTIMIZATION FOR STATE VARIABLES 1 Automated ! Pending Fix

G012 ® Gas STORAGE VARIABLE CACHING IN MEMORY 4 Automated ! Pending Fix

Page 9 SolidityScan e A security assessment report

04. Vulnerability Details

Page 10

Issue Type
FEE ON TRANSFER TOKEN INCOMPATIBILITY

S. No. Severity Detection Method
HOO1 ® High SolidityScan Al
Bug ID File Location

SSP_120371_152 -~

Upgrade your Plan to view the full report

1High Issues Found

Instances

1

Line No.

Please upgrade your plan to view all the issues in your report.

Action Taken

Y False Positive

SolidityScan e A security assessment report

https://solidityscan.com/billing

Issue Type
PAUSABLE MECHANISM NOT ENFORCED

S. No. Severity Detection Method Instances

MO0O01 Medium 4 SolidityScan Al 1

Bug ID File Location Line No. Action Taken
SSP_120371_154 -- - % False Positive

Upgrade your Plan to view the full report

1 Medium Issues Found

Please upgrade your plan to view all the issues in your report.

Page 14 SolidityScan e A security assessment report

https://solidityscan.com/billing

Page 18

Issue Type

APPROVING MAXIMUM VALUE

S. No. Severity Detection Method
LOO1 ® Low Automated
Bug ID File Location

SSP_120371_83 --

SSP_120371_84

SSP_120371_85

Upgrade your Plan to view the full report

3 Low Issues Found

Instances

3

Line No.

Please upgrade your plan to view all the issues in your report.

Action Taken

% False Positive

Y« False Positive

v« False Positive

SolidityScan e A security assessment report

https://solidityscan.com/billing

Issue Type
ADDING A RETURN STATEMENT WHEN THE FUNCTION DEFINES A NAMED RETURN VARIABLE IS

REDUNDANT

S. No. Severity Detection Method Instances

1001 ® Informational Automated 1

Bug ID File Location Line No. Action Taken
SSP_120371_12 -- -- Pending Fix

Upgrade your Plan to view the full report

1Informational Issues Found

Please upgrade your plan to view all the issues in your report.

Page 26 SolidityScan e A security assessment report

https://solidityscan.com/billing

Issue Type

ABI ENCODE IS LESS EFFICIENT THAN ABI ENCODEPACKED

S. No. Severity Detection Method Instances

G001 Gas Automated 1

7 Description

The contract is using abi.encode() in the function. In abi.encode() , all elementary types are padded to 32 bytes and
dynamic arrays include their length, whereas abi.encodePacked() will only use the minimal required memory to enco

de the data.
Bug ID File Location Line No. Action Taken
SSP_120371_87 Vvia-collateral-v3.sol L136 -L136 Pending Fix

Page 45 SolidityScan e A security assessment report

Page 46

Issue Type

AVOID RE-STORING VALUES

S. No. Severity Detection Method Instances

G002 Gas Automated 5

7 Description

The function is found to be allowing re-storing the value in the contract's state variable even when the old value is eq
ual to the new value. This practice results in unnecessary gas consumption due to the Gsreset operation (2900 ga
s), which could be avoided. If the old value and the new value are the same, not updating the storage would avoid thi
s cost and could instead incur a Gcoldsload (2100 gas) or a Gwarmaccess (100 gas), potentially saving gas.

Bug ID File Location Line No. Action Taken

SSP_120371_30 via-collateral-v3.sol L161-1L188 Pending Fix
SSP_120371_31 via-collateral-v3.sol L190-L194 Pending Fix
SSP_120371_32 via-collateral-v3.sol L196 - L200 Pending Fix
SSP_120371_33 via-collateral-v3.sol L202 - L205 Pending Fix
SSP_120371_34 via-collateral-v3.sol L207 -L212 Pending Fix

SolidityScan e A security assessment report

Issue Type

AVOID ZERO-TO-ONE STORAGE WRITES

S. No. Severity Detection Method Instances

G003 Gas Automated 4

7 Description

Writing a storage variable from zero to a non-zero value costs 22,100 gas (20,000 for the write and 2,100 for cold acc
ess), making it one of the most expensive operations. This is why patterns like OpenZeppelin’s ReentrancyGuard us
e 1 and 2 instead of 0 and 1 —to avoid the high cost of zero-to-non-zero writes. Non-zero to non-zero updates
cost only 5,000 gas.

Bug ID File Location Line No. Action Taken

SSP_120371_95 Vvia-collateral-v3.sol L82 - 182 Pending Fix
SSP_120371_96 via-collateral-v3.sol L83 -183 Pending Fix
SSP_120371_97 via-collateral-v3.sol L199 - L199 Pending Fix
SSP_120371_98 Vvia-collateral-v3.sol L204 - L204 Pending Fix

Page 47 SolidityScan e A security assessment report

Issue Type

CACHE ADDRESS(THIS) WHEN USED MORE THAN ONCE

S. No. Severity Detection Method Instances

G004 Gas Automated 4

7 Description

The repeated usage of address(this) within the contract could result in increased gas costs due to multiple executio
ns of the same computation, potentially impacting efficiency and overall transaction expenses.

Bug ID File Location Line No. Action Taken

SSP_120371_140 via-collateral-v3.sol L123-L123 Pending Fix
SSP_120371_141 via-collateral-v3.sol L129 -L129 Pending Fix
SSP_120371_142 via-collateral-v3.sol L133-L133 Pending Fix
SSP_120371_143 via-collateral-v3.sol L256 - L256 Pending Fix

Page 48 SolidityScan e A security assessment report

Issue Type

CHEAPER CONDITIONAL OPERATORS

S. No. Severity Detection Method Instances

G005 Gas Automated 3

7 Description

During compilation, x!=0 is cheaper than x>0 for unsigned integers in solidity inside conditional statements.

Bug ID File Location Line No. Action Taken

SSP_120371_145 via-collateral-v3.sol L117 -L117 Pending Fix
SSP_120371_146 via-collateral-v3.sol L122 -L122 Pending Fix
SSP_120371_147 via-collateral-v3.sol L127 - L127 Pending Fix

Page 49 SolidityScan e A security assessment report

Issue Type

CHEAPER INEQUALITIES IN IF()

S. No. Severity Detection Method Instances

G006 Gas Automated 5

7 Description

The contract was found to be doing comparisons using inequalities inside the if statement.
When inside the if statements, non-strict inequalities (>=, <=) are usually cheaper than the strict equalities (>, <).

Bug ID File Location Line No. Action Taken

SSP_120371_5 via-collateral-v3.sol L112-L112 Pending Fix
SSP_120371_6 via-collateral-v3.sol L1117 -L117 Pending Fix
SSP_120371_7 via-collateral-v3.sol L122-1122 Pending Fix
SSP_120371_8 via-collateral-v3.sol L127 -L127 Pending Fix
SSP_120371_9 via-collateral-v3.sol L148 -L148 Pending Fix

Page 50 SolidityScan e A security assessment report

Issue Type

DEFINE CONSTRUCTOR AS PAYABLE

S. No. Severity Detection Method Instances

G007 Gas Automated 1

7 Description

Developers can save around 10 opcodes and some gas if the constructors are defined as payable.
However, it should be noted that it comes with risks because payable constructors can accept ETH during deployme

nt.
Bug ID File Location Line No. Action Taken
SSP_120371_11 via-collateral-v3.sol L66 - L90 Pending Fix

Page 51 SolidityScan e A security assessment report

Issue Type

REVERTING FUNCTIONS CAN BE PAYABLE

Detection Method Instances

Automated 8

S. No. Severity
G008 Gas

7 Description

If a function modifier such as onlyOwner is used, the function will revert if a normal user tries to pay the function. M
arking the function as payable will lower the gas cost for legitimate callers because the compiler will not include chec
ks for whether a payment was provided.

Page 52

Bug ID File Location Line No. Action Taken

SSP_120371_99 via-collateral-v3.sol L161-L188 Pending Fix
SSP_120371_100 via-collateral-v3.sol L190-L194 Pending Fix
SSP_120371_101 via-collateral-v3.sol L196 - L200 Pending Fix
SSP_120371_102 via-collateral-v3.sol L202 - L205 Pending Fix
SSP_120371_103 via-collateral-v3.sol L207 - L212 Pending Fix
SSP_120371_104 via-collateral-v3.sol L214 -1L220 Pending Fix
SSP_120371_105 via-collateral-v3.sol L222 - 1224 Pending Fix
SSP_120371_106 via-collateral-v3.sol L226 - L237 Pending Fix

SolidityScan e A security assessment report

Issue Type

FUNCTION SHOULD RETURN STRUCT

S. No. Severity Detection Method Instances

G009 Gas Automated 2

7 Description

The function was detected to be returning multiple values.
Consider using a struct instead of multiple return values for the function. It can improve code readability.

Bug ID File Location Line No. Action Taken
SSP_120371_3 via-collateral-v3.sol L240 - 1249 Pending Fix
SSP_120371_4 via-collateral-v3.sol L263 - L265 Pending Fix

Page 53 SolidityScan e A security assessment report

Issue Type

GAS INEFFICIENCY DUE TO MULTIPLE OPERANDS IN SINGLE IF/ELSEIF CONDITION

S. No. Severity Detection Method Instances

G010 Gas Automated 2

7 Description

The contract is found to use multiple operands within a single if or elseif statement, which can lead to unnecessar
y gas consumption due to the way the EVM evaluates compound boolean expressions. Each operand in a compound

condition is evaluated even if the first condition fails, unless short-circuiting occurs, and the combined logic can resul
t in more complex bytecode and higher gas usage compared to using nested if statements. This inefficiency is parti
cularly relevant in functions that are called frequently or within loops.

Bug ID File Location Line No. Action Taken
SSP_120371_1 via-collateral-v3.sol L75-L1L75 Pending Fix
SSP_120371_2 via-collateral-v3.sol L169 -L171 Pending Fix

Page 54 SolidityScan e A security assessment report

Issue Type

GAS OPTIMIZATION FOR STATE VARIABLES

S. No. Severity Detection Method Instances

GO1M Gas Automated 1

7 Description

Plus equals (+=) costs more gas than addition operator. The same thing happens with minus equals (-=).

Bug ID File Location Line No. Action Taken

SSP_120371_10 Vvia-collateral-v3.sol L139-1L139 Pending Fix

Page 55 SolidityScan e A security assessment report

Issue Type

STORAGE VARIABLE CACHING IN MEMORY

S. No. Severity Detection Method Instances

G012 Gas Automated 4

7 Description

The contract is using the state variable multiple times in the function.
SLOADs are expensive (100 gas after the 1st one) compared to MLOAD / MSTORE (3 gas each).

Bug ID File Location Line No. Action Taken

SSP_120371_63 Vvia-collateral-v3.sol L93 - L1141 Pending Fix
SSP_120371_63 Vvia-collateral-v3.sol L93 - L1141 Pending Fix
SSP_120371_64 Vvia-collateral-v3.sol L214 -1220 Pending Fix
SSP_120371_65 via-collateral-v3.sol L240 - L249 Pending Fix

Page 56 SolidityScan e A security assessment report

05. History

® Critical ® High Medium @ Low Informational Gas
No Date Security Score Scan Overview
1. 2026-01-09 72.77 e0 ®1 "0 @0 ®17 ®39

Page 57 SolidityScan e A security assessment report

06. Disclaimer

The Reports neither endorse nor condemn any specific project or team, nor do they guarantee the security
of any specific project. The contents of this report do not, and should not be interpreted as having any
bearing on, the economics of tokens, token sales, or any other goods, services, or assets.

The security audit is not meant to replace functional testing done before a software release.

There is no warranty that all possible security issues of a particular smart contract(s) will be found by the
tool, i.e., It is not guaranteed that there will not be any further findings based solely on the results of this
evaluation.

Emerging technologies such as Smart Contracts and Solidity carry a high level of technical risk and
uncertainty. There is no warranty or representation made by this report to any Third Party in regards to the
quality of code, the business model or the proprietors of any such business model, or the legal compliance
of any business.

In no way should a third party use these reports to make any decisions about buying or selling a token,
product, service, or any other asset. It should be noted that this report is not investment advice, is not
intended to be relied on as investment advice, and has no endorsement of this project or team. It does not
serve as a guarantee as to the project's absolute security.

The assessment provided by SolidityScan is subject to dependencies and under continuing development.
You agree that your access and/or use, including but not limited to any services, reports, and materials, will
be at your sole risk on an as-is, where-is, and as-available basis. SolidityScan owes no duty to any third
party by virtue of publishing these Reports.

As one audit-based assessment cannot be considered comprehensive, we always recommend proceeding
with several independent manual audits including manual audit and a public bug bounty program to ensure
the security of the smart contracts.

Page 58 SolidityScan e A security assessment report

