Powered by

— SolidityScan | —[CRED
SHIELDS

Security Assessment Report

Empx DEX Aggregator
8 Jan 2026

This security assessment report was prepared by

SolidityScan.com, a cloud-based Smart Contract Scanner.

SolidityScan e A security assessment report

https://solidityscan.com/
https://www.credshields.com/

Table of Contents

01 Vulnerability Classification and Severity
02 Executive Summary
03 Findings Summary

04 Vulnerability Details
IMPROPER VALIDATION IN REQUIRE/ASSERT STATEMENTS
REENTRANCY
TRANSFER INSIDE A LOOP
ZERO AMOUNT SWAPS NOT REJECTED
ERC20 NON STANDARD BEHAVIOR
UNCHECKED ARRAY LENGTH
LIMITATIONS OF SOLIDITY'S TRY-CATCH IN EXTERNAL CALLS
PRECISION LOSS DURING DIVISION BY LARGE NUMBERS
DEPRECATED SAFEAPPROVE
SWAP LIMIT MISSING

EXECUTESPLITSWAP DOES NOT ENFORCE THAT EACH PATH STARTS WITH THE SAME
TOKENIN AS THE ONE BEING DISTRIBUTED

SLIPPAGE CHECK IN EXECUTECONVERGESWAP DEPENDS ON ERC20.BALANCEOF() READINGS
OF ARBITRARY TOKENOUT, WHICH CAN BE SPOOFED BY MALICIOUS TOKENS

APPROVING MAXIMUM VALUE

LACK OF ZERO VALUE CHECK IN TOKEN TRANSFERS
MISSING EVENTS

MISSING ZERO ADDRESS VALIDATION

OUTDATED COMPILER VERSION

AVOID ARITHMETIC DIRECTLY WITHIN ARRAY INDICES

Page 1 SolidityScan e A security assessment report

Page 2

BLOCK VALUES AS A PROXY FOR TIME

MISSING @AUTHOR IN NATSPEC COMMENTS FOR CONTRACT DECLARATION

MISSING @DEV IN NATSPEC COMMENTS FOR CONTRACT DECLARATION

MISSING @DEV IN NATSPEC COMMENTS FOR FUNCTIONS

MISSING @INHERITDOC ON OVERRIDE FUNCTIONS

MISSING NATSPEC COMMENTS IN SCOPE BLOCKS

MISSING NATSPEC DESCRIPTIONS FOR PUBLIC VARIABLE DECLARATIONS

MISSING @NOTICE IN NATSPEC COMMENTS FOR CONSTRUCTORS

MISSING @NOTICE IN NATSPEC COMMENTS FOR FUNCTIONS

NAME MAPPING PARAMETERS

UNUSED RECEIVE FALLBACK

ARRAY LENGTH CACHING

AVOID RE-STORING VALUES

AVOID ZERO-TO-ONE STORAGE WRITES

CACHE ADDRESS(THIS) WHEN USED MORE THAN ONCE

CHEAPER CONDITIONAL OPERATORS

CHEAPER INEQUALITIES IN IF()

CHEAPER INEQUALITIES IN REQUIRE()

DEFAULT INT VALUES ARE MANUALLY RESET

DEFINE CONSTRUCTOR AS PAYABLE

FUNCTIONS CAN BE IN-LINED

GAS INEFFICIENCY DUE TO MULTIPLE OPERANDS IN SINGLE IF/ELSEIF CONDITION

GAS OPTIMIZATION IN INCREMENTS

LONG REQUIRE/REVERT STRINGS

NAMED RETURN OF LOCAL VARIABLE SAVES GAS AS COMPARED TO RETURN STATEMENT

PUBLIC CONSTANTS CAN BE PRIVATE

SolidityScan e A security assessment report

STORAGE VARIABLE CACHING IN MEMORY

UNNECESSARY CHECKED ARITHMETIC IN LOOP

UNNECESSARY DEFAULT VALUE INITIALIZATION

UNUSED IMPORTS

05 Scan History

06 Disclaimer

Page 3

SolidityScan e A security assessment report

01. Classification and Severity

Description

To enhance navigability, the document is organized in descending order of severity for easy reference. Issues are categorized
as v Fixed, Pending Fix, or “x Won't Fix, indicating their current status. “x Won't Fix denotes that the team is
aware of the issue but has chosen not to resolve it. Issues labeled as Pending Fix state that the bug is yet to be
resolved. Additionally, each issue's severity is assessed based on the risk of exploitation or the potential for other unexpected
or unsafe behavior.

e Critical ¢ High

The issue affects the contract in such a way that funds High-severity vulnerabilities pose a significant risk to both
may be lost, allocated incorrectly, or otherwise result in a the Smart Contract and the organization. They can lead
significant loss. to user fund losses, may have conditional requirements,

and are challenging to exploit.

Medium * Low
The issue affects the ability of the contract to operate in The issue has minimal impact on the contract’s ability to
a way that doesn't significantly hinder its behavior. operate.

Informational Gas
The issue does not affect the contract's operational This category deals with optimizing code and refactoring
capability but is considered good practice to address. to conserve gas.

Page 4 SolidityScan e A security assessment report

02.

Summary

4 f Empx DEX Aggregator
.sol Uploaded Solidity File(s)

Language

Solidity

Publishers/Owner Name

91.41

Audit Methodology

Static Scanning

Organization

Security Score is GREAT

Website

Contact Email

The SolidityScan score is calculated based on lines of code and weights assigned to
each issue depending on the severity and confidence. To improve your score, view
the detailed result and leverage the remediation solutions provided.

This report has been prepared for Empx DEX Aggregator using SolidityScan to scan and discover vulnerabilities and safe
coding practices in their smart contract including the libraries used by the contract that are not officially recognized. The
SolidityScan tool runs a comprehensive static analysis on the Solidity code and finds vulnerabilities ranging from minor gas
optimizations to major vulnerabilities leading to the loss of funds. The coverage scope pays attention to all the informational
and critical vulnerabilities with over 700+ modules. The scanning and auditing process covers the following areas:

Various common and uncommon attack vectors will be investigated to ensure that the smart contracts are secure from
malicious actors. The scanner modules find and flag issues related to Gas optimizations that help in reducing the overall Gas
cost It scans and evaluates the codebase against industry best practices and standards to ensure compliance It makes sure

that the officially recognized libraries used in the code are secure and up to date.

The SolidityScan Team recommends running regular audit scans to identify any vulnerabilities that are introduced after Empx
DEX Aggregator introduces new features or refactors the code.

Page 5

SolidityScan e A security assessment report

03. Findings Summary

i f Empx DEX Aggregator

s File Scan
O Security Score ’ Scan duration - Lines of code
91.41/100 442 secs - 426
Total Vulnerabilities
found
o 0 1 0 124 103
Crit High Med Low Info Gas

_|° This audit report has not been verified by the SolidityScan team. To learn more
. about our published reports. click here

-

r

Page 6 SolidityScan e A security assessment report

ACTION TAKEN

0 34 0 233

v Fixed vx False Positive x Won't Fix ! Pending Fix

S. No. Severity Bug Type Instances Detection Method Status

HOO1 @ High IMPROPER VALIDATION IN REQUIRE/ASSERT 2 Automated Vx False Positive
STATEMENTS

H002 @ High REENTRANCY 2 Automated v False Positive

HO03 @ High TRANSFER INSIDE A LOOP 2 Automated vy False Positive

HO004 @ High ZERO AMOUNT SWAPS NOT REJECTED 2 SolidityScan Al vx False Positive

MO001 Medium ERC20 NON STANDARD BEHAVIOR 1 SolidityScan Al vy False Positive

M002 Medium UNCHECKED ARRAY LENGTH 2 Automated v False Positive

M003 Medium LIMITATIONS OF SOLIDITY'S TRY-CATCH IN 2 Automated vy False Positive
EXTERNAL CALLS

M004 Medium PRECISION LOSS DURING DIVISION BY LARGE 3 Automated vy False Positive
NUMBERS

MO005 Medium DEPRECATED SAFEAPPROVE 1 Automated vy False Positive

M006 Medium SWAP LIMIT MISSING 1 SolidityScan Al v« False Positive

LOO1 ® Low EXECUTESPLITSWAP DOES NOT ENFORCE THAT 1 SolidityScan Al A\ False Positive

EACH PATH STARTS WITH THE SAME TOKENIN AS
THE ONE BEING DISTRIBUTED

L002 ® Low SLIPPAGE CHECK IN EXECUTECONVERGESWAP 1 SolidityScan Al vy False Positive
DEPENDS ON ERC20.BALANCEOF() READINGS OF
ARBITRARY TOKENOUT, WHICH CAN BE SPOOFED
BY MALICIOUS TOKENS

LO03 ® Low APPROVING MAXIMUM VALUE 1 Automated vy False Positive

Page 7 SolidityScan e A security assessment report

S. No. Severity Bug Type Instances Detection Method Status

LOO0S @ Low MISSING EVENTS 5 Automated % False Positive

LO06 @ Low MISSING ZERO ADDRESS VALIDATION 3 Automated Y False Positive

LO07 @ Low OUTDATED COMPILER VERSION 1 Automated Vx False Positive

1001 @ Informational AVOID ARITHMETIC DIRECTLY WITHIN ARRAY 16 Automated ! Pending Fix
INDICES

1002 @ Informational BLOCK VALUES AS A PROXY FOR TIME 2 Automated ! Pending Fix

1003 @ Informational MISSING @AUTHOR IN NATSPEC COMMENTS FOR 1 Automated ! Pending Fix

CONTRACT DECLARATION

1004 ® Informational MISSING @DEV IN NATSPEC COMMENTS FOR 1 Automated ! Pending Fix
CONTRACT DECLARATION

1005 @® Informational MISSING @DEV IN NATSPEC COMMENTS FOR 24 Automated ! Pending Fix
FUNCTIONS

1006 ® Informational MISSING @INHERITDOC ON OVERRIDE FUNCTIONS 11 Automated ! Pending Fix

1007 ® Informational MISSING NATSPEC COMMENTS IN SCOPE BLOCKS 35 Automated ! Pending Fix

1008 ® Informational MISSING NATSPEC DESCRIPTIONS FOR PUBLIC 8 Automated ! Pending Fix

VARIABLE DECLARATIONS

1009 ® Informational MISSING @NOTICE IN NATSPEC COMMENTS FOR 1 Automated ! Pending Fix
CONSTRUCTORS

1010 @ Informational MISSING @NOTICE IN NATSPEC COMMENTS FOR 24 Automated ! Pending Fix
FUNCTIONS

1011 ® Informational NAME MAPPING PARAMETERS 1 Automated ! Pending Fix

1012 ® Informational UNUSED RECEIVE FALLBACK 1 Automated ! Pending Fix

G001 ® Gas ARRAY LENGTH CACHING 1 Automated ! Pending Fix

Page 8 SolidityScan e A security assessment report

S. No. Severity Bug Type Instances Detection Method Status

G002 ® Gas AVOID RE-STORING VALUES 4 Automated ! Pending Fix
G003 ® Gas AVOID ZERO-TO-ONE STORAGE WRITES 1 Automated ! Pending Fix
G004 ® Gas CACHE ADDRESS(THIS) WHEN USED MORE THAN 14 Automated ! Pending Fix
ONCE
G005 ® Gas CHEAPER CONDITIONAL OPERATORS 13 Automated ! Pending Fix
G006 ® Gas CHEAPER INEQUALITIES IN IF() 6 Automated ! Pending Fix
G007 ® Gas CHEAPER INEQUALITIES IN REQUIRE() 8 Automated ! Pending Fix
G008 ® Gas DEFAULT INT VALUES ARE MANUALLY RESET 1 Automated ! Pending Fix
G009 ® Gas DEFINE CONSTRUCTOR AS PAYABLE 1 Automated ! Pending Fix
G010 ® Gas FUNCTIONS CAN BE IN-LINED 2 Automated ! Pending Fix
G011 ® Gas GAS INEFFICIENCY DUE TO MULTIPLE OPERANDS 3 Automated ! Pending Fix

IN SINGLE IF/ELSEIF CONDITION

G012 ® Gas GAS OPTIMIZATION IN INCREMENTS " Automated ! Pending Fix
G013 ® Gas LONG REQUIRE/REVERT STRINGS 5 Automated ! Pending Fix
G014 ® Gas NAMED RETURN OF LOCAL VARIABLE SAVES GAS 4 Automated ! Pending Fix

AS COMPARED TO RETURN STATEMENT

G015 ® Gas PUBLIC CONSTANTS CAN BE PRIVATE 2 Automated ! Pending Fix
G016 ® Gas STORAGE VARIABLE CACHING IN MEMORY 6 Automated ! Pending Fix
G017 ® Gas UNNECESSARY CHECKED ARITHMETIC IN LOOP " Automated ! Pending Fix
G018 ® Gas UNNECESSARY DEFAULT VALUE INITIALIZATION 1 Automated ! Pending Fix
G019 ® Cas UNUSED IMPORTS 1 Automated ! Pending Fix

Page 9 SolidityScan e A security assessment report

04. Vulnerability Details

Page 10

Issue Type

IMPROPER VALIDATION IN REQUIRE/ASSERT STATEMENTS

S. No. Severity
HOO1 ® High
Bug ID File Location

SSP_120277_15 --

SSP_120277_16 --

Detection Method Instances

Automated 2

Line No.

Upgrade your Plan to view the full report

2 High Issues Found

Please upgrade your plan to view all the issues in your report.

Action Taken

Y False Positive

Y« False Positive

SolidityScan e A security assessment report

https://solidityscan.com/billing

Issue Type

ERC20 NON STANDARD BEHAVIOR

S. No. Severity Detection Method Instances

MO0O01 Medium 4 SolidityScan Al 1

Bug ID File Location Line No. Action Taken
SSP_120277_265 -- - % False Positive

Upgrade your Plan to view the full report

1 Medium Issues Found

Please upgrade your plan to view all the issues in your report.

Page 14 SolidityScan e A security assessment report

https://solidityscan.com/billing

Issue Type
EXECUTESPLITSWAP DOES NOT ENFORCE THAT EACH PATH STARTS WITH THE SAME TOKENIN
AS THE ONE BEING DISTRIBUTED

S. No. Severity Detection Method Instances

LOO1 ® Low ¥4 SolidityScan Al 1

Bug ID File Location Line No. Action Taken
SSP_120277_266 -- -- Y% False Positive

Upgrade your Plan to view the full report

1Low Issues Found

Please upgrade your plan to view all the issues in your report.

Page 20 SolidityScan e A security assessment report

https://solidityscan.com/billing

Issue Type

AVOID ARITHMETIC DIRECTLY WITHIN ARRAY INDICES

S. No. Severity Detection Method Instances
1001 ® Informational Automated 16
Bug ID File Location Line No. Action Taken
SSP_120277_58 -- -- Pending Fix
SSP_120277_59 -- -- Pending Fix
SSP_120277_60 -- -- Pending Fix
SSP_120277_61 -- -- Pending Fix
SSP_120277_62 -- - Pending Fix
S¢

Upgrade your Plan to view the full report
S¢

16 Informational Issues Found
St Please upgrade your plan to view all the issues in your report.
S¢
SSP_120277_68 -- -- Pending Fix
SSP_120277_69 -- -- Pending Fix
SSP_120277_70 -- -- Pending Fix

Page 27

SolidityScan e A security assessment report

https://solidityscan.com/billing

Bug ID File Location Line No. Action Taken

SSP_120277_71 -- -- ! Pending Fix
SSP_120277_72 -- -- ' Pending Fix
SSP_120277_73 -- -- ' Pending Fix

Upgrade your Plan to view the full report
16 Informational Issues Found

Please upgrade your plan to view all the issues in your report.

Page 28 SolidityScan e A security assessment report

https://solidityscan.com/billing

Issue Type

ARRAY LENGTH CACHING

Detection Method
Automated "

S. No. Severity Instances

G001 Gas

~» Description

During each iteration of the loop, reading the length of the array uses more gas than is necessary. In the most favora
ble scenario, in which the length is read from a memory variable, storing the array length in the stack can save about
3 gas per iteration. In the least favorable scenario, in which external calls are made during each iteration, the amount

Page 44

of gas wasted can be significant.

Bug ID File Location Line No. Action Taken

SSP_120277_38 EmpsealRouter.sol L95 - L97 Pending Fix
SSP_120277_39 EmpsealRouter.sol L102-L104 Pending Fix
SSP_120277_40 EmpsealRouter.sol L196 - L224 Pending Fix
SSP_120277_41 EmpsealRouter.sol L299 - L345 Pending Fix
SSP_120277_42 EmpsealRouter.sol L317 - L326 Pending Fix
SSP_120277_43 EmpsealRouter.sol L330-1L342 Pending Fix
SSP_120277_44 EmpsealRouter.sol L371-L373 Pending Fix
SSP_120277_45 EmpsealRouter.sol L377 -L383 Pending Fix
SSP_120277_46 EmpsealRouter.sol L387 - L399 Pending Fix
SSP_120277_47 EmpsealRouter.sol L458 - L464 Pending Fix

SolidityScan e A security assessment report

Bug ID File Location Line No. Action Taken

SSP_120277_48 EmpsealRouter.sol L475 - 1482 ' Pending Fix

Page 45 SolidityScan e A security assessment report

Page 46

Issue Type

AVOID RE-STORING VALUES

S. No. Severity

G002

7 Description

Gas Automated

Detection Method

Instances

4

The function is found to be allowing re-storing the value in the contract's state variable even when the old value is eq
ual to the new value. This practice results in unnecessary gas consumption due to the Gsreset operation (2900 ga
s), which could be avoided. If the old value and the new value are the same, not updating the storage would avoid thi
s cost and could instead incur a Gcoldsload (2100 gas) or a Gwarmaccess (100 gas), potentially saving gas.

Bug ID

SSP_120277_89

SSP_120277_90

SSP_120277_91

SSP_120277_92

File Location

EmpsealRouter.sol

EmpsealRouter.sol

EmpsealRouter.sol

EmpsealRouter.sol

Line No. Action Taken

L88 - L91 Pending Fix
L93 -L106 Pending Fix
L108 -L112 Pending Fix
L114-1L118 Pending Fix

SolidityScan e A security assessment report

Issue Type

AVOID ZERO-TO-ONE STORAGE WRITES

S. No. Severity Detection Method Instances

G003 Gas Automated 1

7 Description

Writing a storage variable from zero to a non-zero value costs 22,100 gas (20,000 for the write and 2,100 for cold acc
ess), making it one of the most expensive operations. This is why patterns like OpenZeppelin’s ReentrancyGuard us
e 1 and 2 instead of 0 and 1 —to avoid the high cost of zero-to-non-zero writes. Non-zero to non-zero updates
cost only 5,000 gas.

Bug ID File Location Line No. Action Taken

SSP_120277_179 EmpsealRouter.sol L110-L110 Pending Fix

Page 47 SolidityScan e A security assessment report

Issue Type

CACHE ADDRESS(THIS) WHEN USED MORE THAN ONCE

Detection Method Instances

Automated 14

S. No. Severity
G004 Gas

~» Description

The repeated usage of address(this) within the contract could result in increased gas costs due to multiple executio
ns of the same computation, potentially impacting efficiency and overall transaction expenses.

Page 48

Bug ID File Location Line No. Action Taken

SSP_120277_97 EmpsealRouter.sol L81 -L81 Pending Fix
SSP_120277_98 EmpsealRouter.sol L137 -L137 Pending Fix
SSP_120277_99 EmpsealRouter.sol L142 -1L142 Pending Fix
SSP_120277_100 EmpsealRouter.sol L172-L1L172 Pending Fix
SSP_120277_100 EmpsealRouter.sol L278 - 1278 Pending Fix
SSP_120277_101 EmpsealRouter.sol L186 -L186 Pending Fix
SSP_120277_102 EmpsealRouter.sol L187 -L187 Pending Fix
SSP_120277_103 EmpsealRouter.sol L7191 -L191 Pending Fix
SSP_120277_104 EmpsealRouter.sol L222 -L222 Pending Fix
SSP_120277_105 EmpsealRouter.sol L226 - L226 Pending Fix
SSP_120277_106 EmpsealRouter.sol L292 - L292 Pending Fix

SolidityScan e A security assessment report

Bug ID File Location Line No. Action Taken

SSP_120277_107 EmpsealRouter.sol L293 - L293 Pending Fix
SSP_120277_108 EmpsealRouter.sol L4217 - L421 Pending Fix
SSP_120277_109 EmpsealRouter.sol L430 - L430 Pending Fix

Page 49 SolidityScan e A security assessment report

Page 50

Issue Type

CHEAPER CONDITIONAL OPERATORS

Detection Method Instances

Automated 13

S. No. Severity
G005 Gas

~» Description

During compilation, x!=0 is cheaper than x>0 for unsigned integers in solidity inside conditional statements.

Bug ID File Location Line No. Action Taken

SSP_120277_74 EmpsealRouter.sol L162-1L162 Pending Fix
SSP_120277_75 EmpsealRouter.sol L163 -L163 Pending Fix
SSP_120277_76 EmpsealRouter.sol L228 -1L228 Pending Fix
SSP_120277_77 EmpsealRouter.sol L268 - L268 Pending Fix
SSP_120277_78 EmpsealRouter.sol L358 - 1358 Pending Fix
SSP_120277_79 EmpsealRouter.sol L82 -182 Pending Fix
SSP_120277_80 EmpsealRouter.sol L169-L169 Pending Fix
SSP_120277_81 EmpsealRouter.sol L177 -L177 Pending Fix
SSP_120277_82 EmpsealRouter.sol L179-L179 Pending Fix
SSP_120277_83 EmpsealRouter.sol L275-L275 Pending Fix
SSP_120277_84 EmpsealRouter.sol L284 - 1284 Pending Fix

SolidityScan e A security assessment report

Bug ID File Location Line No. Action Taken

SSP_120277_85 EmpsealRouter.sol L286 - 1286 Pending Fix

SSP_120277_86 EmpsealRouter.sol L363-1363 Pending Fix

Page 51 SolidityScan e A security assessment report

Issue Type

CHEAPER INEQUALITIES IN IF()

Detection Method Instances

Automated 6

S. No. Severity
G006 Gas

7 Description

The contract was found to be doing comparisons using inequalities inside the if statement.
When inside the if statements, non-strict inequalities (>=, <=) are usually cheaper than the strict equalities (>, <).

Page 52

Bug ID File Location Line No. Action Taken

SSP_120277_30 EmpsealRouter.sol L82 -182 Pending Fix
SSP_120277_31 EmpsealRouter.sol L169 -L169 Pending Fix
SSP_120277_32 EmpsealRouter.sol L177 -L177 Pending Fix
SSP_120277_33 EmpsealRouter.sol L275-1275 Pending Fix
SSP_120277_34 EmpsealRouter.sol L284 - 1284 Pending Fix
SSP_120277_35 EmpsealRouter.sol L363-1363 Pending Fix

SolidityScan e A security assessment report

Issue Type

CHEAPER INEQUALITIES IN REQUIRE()

Detection Method Instances

Automated 8

S. No. Severity
G007 Gas

7 Description

The contract was found to be performing comparisons using inequalities inside the require statement. When inside
the require statements, non-strict inequalities (>=, <=) are usually costlier than strict equalities (>, <) .

Page 53

Bug ID File Location Line No. Action Taken

SSP_120277_7 EmpsealRouter.sol L7109 -L109 Pending Fix
SSP_120277_8 EmpsealRouter.sol L123-L123 Pending Fix
SSP_120277_9 EmpsealRouter.sol L124 -L124 Pending Fix
SSP_120277_10 EmpsealRouter.sol L160-L160 Pending Fix
SSP_120277_11 EmpsealRouter.sol L253 -1L253 Pending Fix
SSP_120277_12 EmpsealRouter.sol L267 - L267 Pending Fix
SSP_120277_13 EmpsealRouter.sol L347 - L347 Pending Fix
SSP_120277_14 EmpsealRouter.sol L385-L385 Pending Fix

SolidityScan e A security assessment report

Issue Type
DEFAULT INT VALUES ARE MANUALLY RESET

S. No. Severity Detection Method Instances

G008 Gas Automated 1

7 Description

The contract is found to inefficiently reset integer variables to their default value of zero using manual assignment. In
Solidity, manually setting a variable to its default value does not free up storage space, leading to unnecessary gas c
onsumption. Instead, using the .delete keyword can achieve the same result while also freeing up storage space on
the Ethereum blockchain, resulting in gas cost savings.

Bug ID File Location Line No. Action Taken

SSP_120277_217 EmpsealRouter.sol L96 - L96 Pending Fix

Page 54 SolidityScan e A security assessment report

Issue Type

DEFINE CONSTRUCTOR AS PAYABLE

S. No. Severity Detection Method Instances

G009 Gas Automated 1

7 Description

Developers can save around 10 opcodes and some gas if the constructors are defined as payable.
However, it should be noted that it comes with risks because payable constructors can accept ETH during deployme

nt.
Bug ID File Location Line No. Action Taken
SSP_120277_94 EmpsealRouter.sol L63 -L75 Pending Fix

Page 55 SolidityScan e A security assessment report

Issue Type

FUNCTIONS CAN BE IN-LINED

S. No. Severity Detection Method Instances

G010 Gas Automated 2

7 Description

The internal function was called only once throughout the contract. Internal functions cost more gas due to additiona
| JUMP instructions and stack operations.

Bug ID File Location Line No. Action Taken
SSP_120277_49 EmpsealRouter.sol L132-1L134 Pending Fix
SSP_120277_50 EmpsealRouter.sol L1471 -L151 Pending Fix

Page 56 SolidityScan e A security assessment report

Issue Type

GAS INEFFICIENCY DUE TO MULTIPLE OPERANDS IN SINGLE IF/ELSEIF CONDITION

S. No. Severity Detection Method Instances

GOo1 Gas Automated 3

7 Description

The contract is found to use multiple operands within a single if or elseif statement, which can lead to unnecessar
y gas consumption due to the way the EVM evaluates compound boolean expressions. Each operand in a compound

condition is evaluated even if the first condition fails, unless short-circuiting occurs, and the combined logic can resul
t in more complex bytecode and higher gas usage compared to using nested if statements. This inefficiency is parti
cularly relevant in functions that are called frequently or within loops.

Bug ID File Location Line No. Action Taken

SSP_120277_161 EmpsealRouter.sol L169-L1L173 Pending Fix
SSP_120277_162 EmpsealRouter.sol L275-L279 Pending Fix
SSP_120277_163 EmpsealRouter.sol L363 -L368 Pending Fix

Page 57 SolidityScan e A security assessment report

Issue Type

GAS OPTIMIZATION IN INCREMENTS

Detection Method Instances

Automated "

S. No. Severity
G012 Gas

~» Description

++i costs less gas compared to i++ or i+=1 for unsigned integers. In i++ , the compiler has to create a temporar
y variable to store the initial value. This is not the case with ++i in which the value is directly incremented and return
ed, thus, making it a cheaper alternative.

Page 58

Bug ID File Location Line No. Action Taken

SSP_120277_206 EmpsealRouter.sol L95 - 195 Pending Fix
SSP_120277_207 EmpsealRouter.sol L7102 -L102 Pending Fix
SSP_120277_208 EmpsealRouter.sol L196-L196 Pending Fix
SSP_120277_209 EmpsealRouter.sol L299 - L299 Pending Fix
SSP_120277_210 EmpsealRouter.sol L317 -L317 Pending Fix
SSP_120277_211 EmpsealRouter.sol L330-L1L330 Pending Fix
SSP_120277_212 EmpsealRouter.sol L371-L371 Pending Fix
SSP_120277_213 EmpsealRouter.sol L377 -L377 Pending Fix
SSP_120277_214 EmpsealRouter.sol L387 - L387 Pending Fix
SSP_120277_215 EmpsealRouter.sol L458 - L458 Pending Fix
SSP_120277_216 EmpsealRouter.sol L475-L475 Pending Fix

SolidityScan e A security assessment report

Issue Type

LONG REQUIRE/REVERT STRINGS

S. No. Severity Detection Method Instances

G013 Gas Automated 5

7 Description

The require() and revert() functions take an input string to show errors if the validation fails.
This strings inside these functions that are longer than 32 bytes require at least one additional MSTORE , along with
additional overhead for computing memory offset, and other parameters.

Bug ID File Location Line No. Action Taken

SSP_120277_2 EmpsealRouter.sol L7109 -L109 Pending Fix
SSP_120277_3 EmpsealRouter.sol L115-L115 Pending Fix
SSP_120277_4 EmpsealRouter.sol L418 - 1418 Pending Fix
SSP_120277_5 EmpsealRouter.sol L419 - L419 Pending Fix
SSP_120277_6 EmpsealRouter.sol L429 - L429 Pending Fix

Page 59 SolidityScan e A security assessment report

Issue Type

NAMED RETURN OF LOCAL VARIABLE SAVES GAS AS COMPARED TO RETURN STATEMENT

S. No. Severity Detection Method Instances

G014 Gas Automated 4

7 Description

The function having a return type is found to be declaring a local variable for returning, which causes extra gas cons
umption. This inefficiency arises because creating and manipulating local variables requires additional computational
steps and memory allocation.

Bug ID File Location Line No. Action Taken

SSP_120277_197 EmpsealRouter.sol L153 - L257 Pending Fix
SSP_120277_.198 EmpsealRouter.sol L443 - L452 Pending Fix
SSP_120277_199 EmpsealRouter.sol L454 - L466 Pending Fix
SSP_120277_200 EmpsealRouter.sol L468 - L484 Pending Fix

Page 60 SolidityScan e A security assessment report

Issue Type

PUBLIC CONSTANTS CAN BE PRIVATE

S. No. Severity Detection Method Instances

G015 Gas Automated 2

7 Description

Public constant variables cost more gas because the EVM automatically creates getter functions for them and adds
entries to the method ID table. The values can be read from the source code instead.

Bug ID File Location Line No. Action Taken
SSP_120277_180 EmpsealRouter.sol L26 - L26 Pending Fix
SSP_120277_181 EmpsealRouter.sol L27 - L27 Pending Fix

Page 61 SolidityScan e A security assessment report

Issue Type

STORAGE VARIABLE CACHING IN MEMORY

Detection Method Instances

Automated 6

S. No. Severity
G016 Gas

7 Description

The contract is using the state variable multiple times in the function.
SLOADs are expensive (100 gas after the 1st one) compared to MLOAD / MSTORE (3 gas each).

Page 62

Bug ID File Location Line No. Action Taken

SSP_120277_172 EmpsealRouter.sol L93-L106 Pending Fix
SSP_120277_173 EmpsealRouter.sol L122-L126 Pending Fix
SSP_120277_174 EmpsealRouter.sol L153 - L257 Pending Fix
SSP_120277_174 EmpsealRouter.sol L153 -L257 Pending Fix
SSP_120277_175 EmpsealRouter.sol L259 - 1349 Pending Fix
SSP_120277_176 EmpsealRouter.sol L454 - L466 Pending Fix

SolidityScan e A security assessment report

Issue Type

UNNECESSARY CHECKED ARITHMETIC IN LOOP

Detection Method Instances

Automated 1

S. No. Severity
G017 Gas

~» Description

Increments inside a loop could never overflow due to the fact that the transaction will run out of gas before the varia
ble reaches its limits. Therefore, it makes no sense to have checked arithmetic in such a place.

Page 63

Bug ID File Location Line No. Action Taken

SSP_120277_19 EmpsealRouter.sol L95-195 Pending Fix
SSP_120277_20 EmpsealRouter.sol L102 -L102 Pending Fix
SSP_120277_21 EmpsealRouter.sol L7196 - L196 Pending Fix
SSP_120277_22 EmpsealRouter.sol L299 - 1299 Pending Fix
SSP_120277_23 EmpsealRouter.sol L317 -L317 Pending Fix
SSP_120277_24 EmpsealRouter.sol L330-L330 Pending Fix
SSP_120277_25 EmpsealRouter.sol L371-L1L371 Pending Fix
SSP_120277_26 EmpsealRouter.sol L377 -L377 Pending Fix
SSP_120277_27 EmpsealRouter.sol L387 -L387 Pending Fix
SSP_120277_28 EmpsealRouter.sol L458 - L458 Pending Fix
SSP_120277_29 EmpsealRouter.sol L475-L475 Pending Fix

SolidityScan e A security assessment report

Page 64

Issue Type

UNNECESSARY DEFAULT VALUE INITIALIZATION

S. No. Severity Detection Method Instances

G018 Gas Automated 1

7 Description

The contract was found to be initializing the value of the variable to it's default value.
This is redundant and not required.

Bug ID File Location Line No.

SSP_120277_93 EmpsealRouter.sol L30 - L30

Action Taken

Pending Fix

SolidityScan e A security assessment report

Issue Type

UNUSED IMPORTS

S. No. Severity Detection Method Instances

G019 Gas Automated 1

7 Description

Solidity is a Gas-constrained language. Having unused code or import statements incurs extra gas usage when deplo
ying the contract.

Bug ID File Location Line No. Action Taken

SSP_120277_160 EmpsealRouter.sol L10-L10 Pending Fix

Page 65 SolidityScan e A security assessment report

05. History

® Critical ® High Medium @ Low Informational Gas
No Date Security Score Scan Overview
1. 2026-01-08 91.41 @0 ©0 "1 ®@0 ®124 ®103

Page 66 SolidityScan e A security assessment report

06. Disclaimer

The Reports neither endorse nor condemn any specific project or team, nor do they guarantee the security
of any specific project. The contents of this report do not, and should not be interpreted as having any
bearing on, the economics of tokens, token sales, or any other goods, services, or assets.

The security audit is not meant to replace functional testing done before a software release.

There is no warranty that all possible security issues of a particular smart contract(s) will be found by the
tool, i.e., It is not guaranteed that there will not be any further findings based solely on the results of this
evaluation.

Emerging technologies such as Smart Contracts and Solidity carry a high level of technical risk and
uncertainty. There is no warranty or representation made by this report to any Third Party in regards to the
quality of code, the business model or the proprietors of any such business model, or the legal compliance
of any business.

In no way should a third party use these reports to make any decisions about buying or selling a token,
product, service, or any other asset. It should be noted that this report is not investment advice, is not
intended to be relied on as investment advice, and has no endorsement of this project or team. It does not
serve as a guarantee as to the project's absolute security.

The assessment provided by SolidityScan is subject to dependencies and under continuing development.
You agree that your access and/or use, including but not limited to any services, reports, and materials, will
be at your sole risk on an as-is, where-is, and as-available basis. SolidityScan owes no duty to any third
party by virtue of publishing these Reports.

As one audit-based assessment cannot be considered comprehensive, we always recommend proceeding
with several independent manual audits including manual audit and a public bug bounty program to ensure
the security of the smart contracts.

Page 67 SolidityScan e A security assessment report

